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1 Probability

1.1 Basics of Probability Theory

Definition 1.1 (Sample space, event)
The set, Ω, of all possible outcomes of a particular experiment is called the sample

space for the experiment.

An event is any collection of possible outcomes of an experiment, that is, any subset

of Ω (including Ω itself).

Theorem 1.1
P (B ∩Ac) = P (B)− P (A ∩B)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Multiplication rule:

P(A ∩B ∩ C) = P(A) ·P(B | A) ·P(C | A ∩B)

Corollary 1.1 (Boole’s Inequality)
P (∪∞

i=1Ai) ≤
∑∞

i=1 P (Ai) for any sets A1, A2, ...

Corollary 1.2 (Bonferroni’s Inequality)

P (A ∩B) ≥ P (A) + P (B)− 1 P

(
n⋂

i=1

Ai

)
≥

n∑
i=1

P (Ai)− (n− 1)

Note on Bonferroni’s Inequality allows us to bound the probability of a simultaneous event

(the intersection) in terms of the probabilities of the individual events. Note that unless the

probabilities of the individual events are sufficiently large, the Bonferroni bound is a useless

(but correct!) negative number. For example, suppose A and B are two events and each has

probability .95, then

P (A ∩B) ≥ P (A) + P (B)− 1 = .95 + .95− 1 = .90.



1 Probability
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1.2 Counting

Definition 1.2 (Factorial)
n! (n factorial) is defined by

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1.

Note on Furthermore, we define 0! = 1.

Note on Stirling’s Formula

Theorem 1.2 (Fundamental Theorem of Counting)
If a job consists of k seperate tasks, the ith of which can be done in ni ways, i = 1, ..., k,

then the entire job can be done in n1 × n2 × · · · × nk ways.

Note on The distinction between counting with replacement and counting without replacement,

and the ordering of the tasks are important. For example, the New York state lottery operated

according to the following scheme. From the numbers 1, 2, ...,44, a person may pick any six for

her ticket. There are four cases.

Ordered, without replacement. 44× 43× 42× 41× 40× 39 = 44!
38! .

Ordered, with replacement. 44× 44× 44× 44× 44× 44 = 446.

Unordered, without replacement. We must divide out the redundant orderings, note that

six numbers can be arranged in 6× 5× 4× 3× 2× 1 ways, so
44× 43× 42× 41× 40× 39

6× 5× 4× 3× 2× 1
=

44!

6!38!
.

Unordered, with replacement. The first guess that 446/(6 × 5 × 4 × 3 × 2 × 1) is not

correct. To count in this case, it is easiest to think of placing 6 markers on the 44 numbers.

In fact, we can think of the 44 numbers defining bins in which we can place the six markers,

M. Thus, we have to count all of the arrangements of 43 walls (44 bins yield 45 walls, but

we disregar the two end walls) and 6 markers. We therefore have 43+6=49 objects,which

can be arranged in 49! ways. However, to eliminate the redundant orderings we must

divide by both 6! and 43!, so 49!
6!43! .

To summarize, the number of possible arrangements of size r from n objects are

1.3 Conditional Probability and Independence

Definition 1.3 (Conditional probability)

The conditional prob of A given B, is P (A | B) = P (A∩B)
P (B) .
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1 Probability

Note on Example An interesting example shows that conditional probabilities require careful

interpretation.

Theorem 1.3
Total probability theorem:

P(B) = P (A1) P (B | A1) + P (A2) P (B | A2) + P (A3) P (B | A3)

Bayes’ rule:

P (Ai | B) =
P (Ai ∩B)

P(B)

=
P (Ai) P (B | Ai)

P(B)

=
P (Ai) P (B | Ai)∑
j P (Aj) P (B | Aj)

Definition 1.4 (Independence)
Two events E and F are independent if P (E ∩F ) = P (E)P (F ), the event E1...En

are independent if for every subset of these eventsP (Ei1 ...Eir) = P (Ei1)...P (Eir).

The random variables X and Y are independent if F (x, y) = FX(x)FY (y), the n

random variables are independent if F (x1, ..xn) = FX1(x1)...FXn(xn).

Note on A pair of events A and B cannot be simultaneously mutually exclusive and independent.

Otherwise, if P (A) > 0 and P (B) > 0, then P (AB) = 0 = P (A)P (B), which contradicts our

assumption.

Theorem 1.4
If A and B are independent events, then the following pairs are also independent:

A and Bc,

Ac and B,

Ac and Bc.

1.4 Random Variables

Definition 1.5
A random variable is a function from a sample space Ω into the real numbers.

Note on R.V. can be used to reduce the size of the problem. For example, suppose we collect

“yes” or “no” in an opinion poll, then the sample space has 250 elements. If we define a variable

X as the number of “yes”, then the sample space is the set of integers {0, ..., 50}.
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1 Probability

1.5 Distribution Functions

Definition 1.6 (CDF)
The cumulative distribution function is defined by

FX(x) = PX(X ≤ x), for all x.

Note on FX can be discontinuous, with jumps at certain values of x. However, at the jump

points FX takes the value at the top of the jump. That is, right-continuity. The property of

right-continuity is a consequence of the definition of the cdf.

Note on Complementary distribution function Complementary distribution function is defined

by F̄ (x) = 1− F (x) = P{X > x}.

Definition 1.7
A random variable X is continuous if FX(x) is a continuous function of x. A random

variable X is discrete if FX(x) is a step function of x.

Definition 1.8
The random variables X and Y are identically distributed if, for every set A ∈ B1,

P (X ∈ A) = P (Y ∈ A).

Note on Note that this does not say that X = Y .

Theorem 1.5
The following two statements are equivalent:

The random variables X and Y are identically distributed.

FX(x) = FY (y) for every x.

1.6 Density and Mass Functions

Definition 1.9 (PMF)
The probability mass function is given by fX(x) = P (X = x) for all x.

Definition 1.10 (PDF)
The probability density function is given by

FX(x) =

∫ x

−∞
fX(t)dt for all x.
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2 Discrete distributions

1.7 Moment Generating Function

Definition 1.11 (Moment Generating Function)
For a random variable X , the moment generating function MX : R → R is defined as

MX(t) := E[etX ] =

∫ ∞

−∞
pX(x)etxdx.

Lemma 1.1
If X1 and X2 are independent random variables, then the MGF of their sum X1 +X2 is

the product of their MGFs:

MX1+X2(t) = MX1(t)MX2(t).

Lemma 1.2 (MGF of Gaussian Variables)
Suppose X ∼ N (0, σ2) is a zero-mean Gaussian variable with variance σ2. Then

MX(t) = exp(
σ2t2

2
).

Proof

MX(t) =

∫ ∞

−∞

1√
2πσ2

exp(− x2

2σ2
) exp(tx)dx

=

∫ ∞

−∞

1√
2πσ2

exp(−(x− tσ2)2

2σ2
+

t2σ2

2
)dx (Completing the square)

= exp(
t2σ2

2
)

∫ ∞

−∞

1√
2πσ2

exp(−(x− tσ2)2

2σ2
)dx = exp(

t2σ2

2
) (Normal dist.)

■

2 Discrete distributions

2.1 Geometric distribution

3 Continuous distributions

3.1 TBD

Theorem 3.1 (Jensen’s Inequality)
For any concave function f , we have

E[f(X)] ≤ f(E(X))

Particularly, if f(x) = 1
x , we have

E[X]E[
1

X
] ≤ 1

Similarly, for any convex function f , we have

E[f(X)] ≥ f(E(X))
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4 Statistics

Theorem 3.2 (Chebyshev’s Inequality)
Let X be a random variable with E[X] and V ar[X], then

P(|X − E(X)| ≥ a) ≤ Var(X)

a2
or P (|X| ≥ a) ≤ EX2

a2

Proof
I{|X| ≥ a} ≤ X2/a2

Then the result follows by taking expectations. ■

Theorem 3.3 (Markov’s Inequality)
If X is a nonnegative random variable, then for any a > 0

P{X ≥ a} ≤ E[X]/a

Proof Let I{X ≥ a} be 1 if X ≥ a and 0 otherwise. Then it is easy to see since X ≥ 0 that

aI{X ≥ a} ≤ X

Taking expectations yields the result. ■

Theorem 3.4 (Gibbs’ Inequality (Soch et al., 2022, p. 94))
Let X be a discrete random variable and consider two probability distributions with pmf

p(x) and q(x). Then the entropy of X according to P is smaller than or equal to the

cross-entropy of P and Q:

−
∑
x∈X

p(x)logbp(x) ≤ −
∑
x∈X

p(x)logbq(x).

Proof This is equivalent to show the KL-divergence is non-negative, i.e.,∑
x∈X

p(x)logb
p(x)

q(x)
≥ 0.

Next, we can prove it via showing that f(x) = lnx− (x− 1) ≤ 0 if x > 0 by its concavity. ■

4 Statistics

4.1 Expectation
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4 Statistics

Definition 4.1 (Expectation)

E[X] =

∫ ∞

−∞
xdF (x) =


∫∞
−∞ xf(x)dx if X is continuous∑
x xP{X = x} if X is discrete

E[h(X)] =

∫ ∞

−∞
h(x)dF (x) if X is continuous

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi] E[aX] = aE[X]

(1)

Lemma 4.1 (Tonelli’s theorem)
If xki ≥ 0 for all k, i, then

∞∑
k=1

k∑
i=1

xki =

∞∑
i=1

∞∑
k=i

xki

Remark Note that when x is negative, the equation may not remain.

Lemma 4.2 (Expectation of nonnegative integer-valued random variable)

E[N ] =
∞∑
i=1

P{N ≥ i} =
∞∑
i=0

P{N > i}

Proof

E[N ] =
∞∑
k=1

kP{N = k}

=

∞∑
k=1

k∑
i=1

P{N = k} (k =

k∑
i=1

1)

=
∞∑
i=1

∞∑
k=i

P{N = k} (Theorem 4.1)

=
∞∑
i=1

P{N ≥ i}

(2)

■

Lemma 4.3 (Expectation of Nonnegative Random Variables)
For any nonnegative random variable X ,

E[X] =

∫ ∞

0
F̄ (x)dx

E[Xn] =

∫ ∞

0
nxn−1F̄ (x)dx

(3)

Remark This lemma is the generalization of Lemma 4.2
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Proof
E [Xn] =

∫ ∞

0
xndF (x)

=

∫ ∞

0

∫ x

0
ntn−1dtdF (x)

=

∫ ∞

0

∫ ∞

t
ntn−1dF (x)dt

=

∫ ∞

0
ntn−1 · [F (∞)− F (t)]dt

=

∫ ∞

0
ntn−1F̄ (t)dt

■

4.2 Variance

Definition 4.2 (Variance)

V ar(X) = E[(X − E[X])2] = E[X2]− E2[X]

V ar[
n∑

i=1

Xi] =
n∑

i=1

V ar(Xi) + 2
∑∑

i<j

Cov(Xi, Xj)

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi) Independent

Var(aX) = a2Var(X)

(4)

Definition 4.3 (Covariance)

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] (5)

Lemma 4.4 (Covariance inequality)

|Cov(X,Y )| ≤ σXσY or Cov2(X,Y ) ≤ Var(X)Var(Y )

Proof This inequality can be easily proved by Cauchy–Schwarz inequality. ■

Definition 4.4 (correlation coefficient)
Note that −1 ≤ ρ ≤ 1, and |ρ| = 1 means that X and Y are linearly related, independent

means that |ρ| = 0, but the converse is not true.

ρ = E

[
(X − E[X])

σX
· (Y − E[Y ])

σY

]
=

cov(X,Y )

σXσY

Remark X and Y are uncorrelated if Cov(X,Y ) = 0. Independent are uncorrelated. However,

the converse needs not be true.
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4 Statistics

Definition 4.5 (Coefficient of variation)
standard deviation divided by mean.

Remark It is a useful statistic for comparing the degree of variation from one data series to

another, even if the means are drastically different from one another.

Example 4.1Bounded variable’s variance must be bounded If P{0 ≤ X ≤ a} = 1, show

that

V ar[X] ≤ a2

4

Proof [First Proof] Define Y = X − a
2 , easy to know that V ar[X] = V ar[Y ], thus our goal

turns to prove V ar[Y ] ≤ a2

4

Since 0 ≤ X ≤ a, we have −a
2 ≤ Y ≤ a

2 , thus E[Y 2] ≤ a2

4 (E[Y 2] =
∫ a2

4
0 sfY 2(s)ds ≤

a2

4

∫ a2

4
0 fY 2(s)ds = a2

4 ).

Var(Y ) = E
[
Y 2
]
− (E[Y ])2 ≤ a2

4
− (E[Y ])2 ≤ a2

4

■

Proof [Another Proof] Firstly, we have E[X2] ≤ E[aX] = aE[X]. Note that

Var(X) = E
[
X2
]
− E[X]2 ≤ a

(
E[X]− E[X]2

a

)
(2E[X]− a)2

=4E[x]2 − 4aE[x] + a2

=4a

(
E[X]2

a
− E[x] +

a

4

)
≥0

Hence, we have the follows, then we prove it.

E[X]− E[X]2

a
≤ a

4

■
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